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We continue our investigation of stochastic lattice gases as a (highly parallel) 
means of simulating given PDEs, in this case Burgers' equation in one dimen- 
sion. The lattice dynamics consists of stochastic unidirectional particle displace- 
ment, and our attention is turned toward the reliability of the model, i.e., its 
ability to reproduce the unique physical solution of Burgers' equation. Lattice 
gas results are discussed and compared against finite-difference calculations and 
exact solutions in examples which include shocks and rarefaction waves. 
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1. I N T R O D U C T I O N  

In this article we investigate a lattice gas model for simulating Burgers' 
equation ~1-3) of diffusion with nonlinear advection in one dimension, 

u~ =#Ux~-UUx, #>10 (1) 

in which # is a constant which determines the amount of dissipation 
present. This equation is generally taken as a description of the velocity of 
a fluid in unidimensional flow, in a simple formulation of the competition 
between convection and diffusion. Its solutions can form shocks, and in fact 
this equation realistically describes the phenomenon of the sonic boom. 

The current approach is exactly that used in our prior lattice gas 
investigations of diffusion and reaction, only now with transition rules 
appropriate to the equation given above. The rules define the dynamics of 
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a population of particles on the nodes of the lattice. There are no velocities 
implemented in our models, and the principle of exclusion imposes the 
constraint of at most one particle per lattice site: each node is either 
occupied or free. The behavior of the occupation probabilities is described 
in the equations of balance (master equations) which follow from the 
transition rules of the automaton and describe the macroscopic evolution 
of the model. Under appropriate conditions, particle distribution observed 
in the automaton directly approximates the solution of the balance equa- 
tions and furnishes the basis of the simulation. 

It is worth noting here that for the viscous form (/~ r  of Burgers' 
equation, the transformation u = -(2#/O)(~O/~?x) relates u(x, t) and O(x, t) 
such that if 0 is a solution of the linear diffusion equation 0, = lzOxx, then 
u is a solution of the viscid Burgers' equation (1), and conversely, apart 
from a multiplicative factor in 0 which does not influence u. (4) This 
transformation was discovered independently by Cole, Hopf, and Burgers 
himself right around 1950 and furnishes a means of constructing exact 
solutions to the viscid Burgers' equation. Thus we are able to compare 
simulation results to exact solutions and accurately judge the capacity of 
the lattice gas model to capture the physics contained in Burgers' equation. 
All comparisons in this article are based on exact solutions provided by 
Benton and Platzman in their 1972 survey of the Burgers' equation 
literature. (4) 

In Section 2, we detail our approach to stochastic lattice gases in 
general. The lattice model for Burgers' equation is defined in Section 3. An 
approximate master equation is derived and the correspondence between it 
and a finite-difference discretization of Burgers' equation is demonstrated. 
In Section 4 we consider nonunicity of the solution of Burgers' inviscid 
equation and the entropy condition in order to investigate the behavior of 
the model and of the master equation. In Section 5 we continue the quest 
for quantitative agreement between the lattice model and the exact solution 
in cases of front propagation. 

2. G E N E R A L  D E S C R I P T I O N  OF T H E  M E T H O D  

In this section we consider the master equations which lead to a 
description of the ordered macroscopic behavior of the occupation 
probabilities in the lattice model. Depending on the transition rules of the 
lattice gas, these are nothing other than finite-difference equations for the 
continuous equations that we want to simulate. 

Imagine a population of identical particles located on the nodes of a 
lattice and changing position according to some prescribed stochastic 
transition rule. An exclusion principle of at most one particle per lattice site 
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means that each site is completely characterized by whether or not it 
contains a particle. Let x7 be the stochastic variable which indicates the 
state of site r at moment n: 

X r 
site r is not occupied at moment n 

site r is occupied at moment n 

Because this is a Boolean variable, its average occupation number is given 
by the probability Pr ~ with which x r - n -  1. 

In order to derive the balance equation of this model and so describe 
the evolution of PT, we consider probabilities of transition: the probability 
of a particle transition from site q to site r at timestep n is given by Pq W~, 
where Wqr is the conditional probability of transition from q to r at 

t imes tep  n, given a particle present at site q at this moment. 
The probability P~ + 1 of finding a particle at site r at moment n + 1 is 

just the probability that a particle transition to site r has occurred in the 
current timestep, including the possible "transition" from r to r. If the 
transition rule allows for particle displacement only between nearest 
neighbors on the lattice and respects the aforementioned exclusion prin- 
ciple, then the balance equation is determined by the probabilities of the 
(mutually exclusive) transitions to r from the neighboring sites as follows: 

n n e r  n +1 = E Pq Wqr (2 )  
q~ JC'(r) 

where JV(r) is the neighborhood of r, composed of r itself and its nearest 
neighbors on the lattice. 

Assuming conservation of mass in the model, we see that 

Y. wr", = 1 (3) 
s ~ ' ( r )  

that is, from a site r a particle must transit to one of the sites in its 
neighborhood. We may solve (3) for Wry, and with this rewrite the balance 
equation as the following evolution equation: 

" "Wqr E wn - -  P r  = Z Pq  _ p n  rq (4 )  
qe ,/V(r) q ~ ,W(r) 

q # r  q # r  

Equation (4) furnishes a deterministic description of the behavior of the 
occupation probabilities. 

A simple example of a stochastic lattice gas such as described above 
consists of a solitary particle in a random walk on a square lattice. This is 
a well-known model of diffusion ~5) which we consider to illustrate our 
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approach. With the random walk rule driving the particle movement on 
the square lattice, Wqr = 1/4 whenever q and r are nearest neighbors, q r r. 
Thus, Eq. (4), the description of the occupation probabilities, becomes 

-Pr=�88 E eq--4P~ 
q~ g/'(r) 

q~:r  

(5) 

which is exactly the finite-difference form of the diffusion equation 
ut = D Au with D = 3x2/4 At. 

This illustrates how a particle's random walk simulates diffusive 
behavior: the behavior of the particle averaged over the ensemble of all 
realizations of its random walk reproduces the solution of the difference 
equation which approximates and is consistent with the continuous 
equation of diffusion. 

The very simple methodology of this example is applicable to other 
lattice gases. Clearly, changing the model's transition rules will have an 
effect on Eq.(4) via the corresponding changes in the transition 
probabilities Wqr. The resulting equation may resemble the finite-difference 
form of another PDE, and the occupation probabilities in the lattice gas 
will approximate the solution of the corresponding difference equation. For 
example, with the appropriate bias in the random walk transition rule for 
a population of particles, the lattice gas simulates the nonlinear diffusion 
equation for a diffusion coefficient which is an arbitrary given function of 
the solutionJ 6) Transition rules which mimic chemical reactions between 
diffusing species will simulate reaction-diffusion equations. (7) In the present 
article we adapt the transition rules to simulate Burgers' equation. 

3. BURGERS"  E Q U A T I O N - - T H E  M O D E L  

In this section we apply the above approach to a lattice gas tailored 
to Burgers' equation. We will be studying Burgers' equation in one dimen- 
sion, so consider now a one-dimensional regular lattice upon which our 
population of particles will "walk." The rule that we consider is the 
following: each particle takes a stochastic walk to the right, respecting the 
exclusion principle of at most one particle per site. We use a parameter ~, 
0 ~< ct ~< 1, to define the probability of each particle's displacement to the 
right: each particle chooses, with probability ~, to walk to the right or, 
with probability 1 - ~, not to move. The exclusion principle is implemented 
in the following way: a particle having chosen to move to the right is 
blocked from all action if the site to its right is already occupied. Thus the 
rule, applied independently and simultaneously at all sites, can be described 
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as follows: a particle at a site j at moment n will move with probability 
to site j +  1 at moment n + 1 unless site j +  1 is already occupied at moment 
n, in which case the particle at j remains stationary for this timestep. 

To determine the balance equation for this simple rule, we follow the 
procedure and terminology of Section2, examining the occupation 
probabilities P]  and how they evolve in time. Once again, a site j can be 
occupied at moment n + 1 only if a particle transition to j, including the 
possible "transition" from j to j, has occurred in the preceding moment. 
Thus, Eq. (2) is the equation of balance for the model and, in this 
one-dimensional case, looks like 

j + l  
n p,~j+l= ~ p~wk  j (6) 

k=j  1 

According to the rule described above which drives the dynamics of this 
model and with the simplifying assumption that the occupation 
probabilities for different sites are independent, (8) the probabilities of 
transition can be written as 

W'~k- 1,k = ~(1 - PT,), W~.k = ccP~+, + (1 - cr W~+~,k = 0  (7) 

Notice that this amounts to approximating WT,_ ~.k and W~, k in terms of 
ordinary rather than conditional probabilities. In this case the balance 
equation (6) looks like 

p ~  +1 = ~ p j _  1( 1 _ p 7  ) _{_ (1 - o~) P7 -~ ~PJPT+I  (8) 

or, equivalently, 

pj +1 n {X n n ~ n " - P ~ = - ~ ( P ~ + I - 2 P ~ + P ) _ I ) + ~ ( Z P j - 1 ) ( P ~ + I - P ~ _ I )  (9) 

With the change of variable v7 = ( - 2 P ~  + 1) V, where V is a characteristic 
velocity, the equation can be rewritten once again, this time as 

n+~--v'~=~-(v]+l--2v~+V~_l)--~VV~(v~+t--v~_l) (10) v] J 2 

Now consider the discretization of Burgers' equation (1), by finite 
differences: 

n+l n 1__2U ~ n UJ+l--U)-I (11) uj - u j  u}'+ +u)  1 " " 
3t  # 3 x  2 u~ 2 Ax 
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"2"r 8.0 

Under the conditions 

f dx 2 o~ -~--~t = # 
At  c~ 

d x  V 

(12) 

Eqs. (10) and (11) are exactly the same, i.e., the finite-difference form for 
Burgers' equation is our approximate balance equation, in terms of v, of 
the lattice gas model. Thus the occupation probabilities in the lattice gas 
will approximate the solution of the finite-difference equation with the dis- 
cretization fixed by (12). Remark also that under the constraints of (12), 
the condition for linear stability for diffusion (9) as well as the Courant-  
Friderichs-Lewy (CFL) condition ~176 are both satisfied. 

A configuration of particles in our simulations consists of a collection 
of independent one-dimensional lattice systems, all governed by the same 
transition rule. We mention here that the lattice gas measurements carried 
out for all the examples in this article consist of ensemble averages; we 
have not used coarse-graining on a single lattice system. Each system is 
initialized stochastically, namely by placing particles site-by-site with 
probabilities determined by the initial velocity profile that we want to 
simulate: 

For our examples we have run several (typically 100) simultaneous one- 
dimensional lattice experiments, measuring particle count on each column 
to produce the lattice measurements shown in the figures. 

l 
I i I I 

T i ~ e s t e p  2,• TimesteP200 

I 

X 
t =-5.000 8.0 

-2.c8. ~  I I I I I I 
X 8.0 

t =5 ,000  

Fig. 1. Shock formation: exact solution (heavier solid curve), automaton measurements (*), 
and finite-difference results (�9 # = 1/10, ~ =  1 (deterministic dynamics). Initial conditions 
w6re specially prepared so that fluctuations in particle concentration are minimized for each 
of the 1D lattice systems. The greater the fluctuation of particle number in each system of the 
initial configuration, the less sharp is the shock in the lattice equilibrium. 
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The first simple example is shown in Fig. 1: standing shock formation 
from nonequilibrium initial conditions. Included are the exact solution, 
au tomaton measurements, and the results of numerical iteration (10), that 
is, the results of the finite-difference scheme subject to conditions (12). The 
exact solution for this example is already near its equilibrium profile at 
t = 0; to start the simulation well outside equilibrium, we have simply 
chosen an earlier initial time, specifically, t = - 5 .  Initial conditions were 
specially prepared so that fluctuations in particle concentration in each 1D 
lattice system were minimized, yielding a sharp shock in the lattice equi- 
librium. This is in contrast with Fig. 5, showing the same example but 
initialized without regard to fluctuations; for the moment  notice simply 
that in the final time we see a wider shock in the lattice equilibrium. 

Remark now that if finite-difference equation (11) with discretization 
(12) gives a poor approximation to Burgers' equation, then even when this 
master equation furnishes a perfect statistical description of the particle dis- 
tribution, the lattice gas simulation will be inadequate. Thus we consider in 
the next section the behavior of the solution of the finite-difference scheme. 

4. M O N O T O N I C I T Y  A N D  T H E  E N T R O P Y  C O N D I T I O N  

Consider Figs. 2 and 3. The test problem is the same in both cases: an 
initial discontinuity which disperses in a rarefaction wave. The only 
implementational difference between the lattice simulations for the two 
examples is the parameter  ~: ~ = 1 in Fig. 2 and c~ = 1/2 in Fig. 3. We can 
explain the difference in behavior for the two cases by considering the 
property of monotonicity of the numerical scheme simulated by the lattice 

L 

X 8 ~  
t = 1 . 2 5 0  

Fig. 2. Rarefaction wave: exact solution (heavier solid curve), automaton measurements (*), 
and finite-difference results (O). #=1/10, c~=l (deterministic dynamics). Same initial 
conditions, t =0, as Fig. 3. Automaton measurements are exactly superimposed on finite- 
difference results. Not a monotone scheme. 
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-2,0 l I I I I I X 8.0 
t = 0.(~0 

Tin~estep TimesteP30 

-2.( I I -8.0 8.0 
t = 0.750 

:/ 
X 

t = 1.250 

Timestep 

-2.0 ~ 100 

-8~0 X 8-O 

t =2.500 

2.0 

-ZO 
-8-O 

T~0~step 

j 
I I r I I I I X 8.o 

t = 5.000 

2-O~ Ti~0~step 

-2"(80 I I I I I I I 
- "  X 8.0 

t = 15.000 

Fig. 3. Rarefaction wave: exact solution (heavier solid curve), au tomaton  measurements  (*), 
and finite-difference results (O) . /~  = 1/10, ~ = 1/2. A mono tone  scheme. 
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gas. Consider the numerical iteration defined by the balance equation (10) 
and written in the form v7 +1 =H(v]  1, v}', V~+l): 

0~ // t/  

"+1 = ( 1 -  v7 + 5  (vj+  + 1) (13) vj 2V 

Such a numerical scheme is monotone if OH/SVk >10, k = j -  1, j, j + 1, for 
all j in the interior of the configuration. ~176 For the numerical scheme given 
in (13), the requirements on v for monotonicity are thus 

v~ 1-v~+l>~2V 

everywhere on the configuration. Notice that since P is a probability and 
v = ( -  2P + 1) V, the first two conditions are automatically true. As for the 
third, we consider separately the two cases a = 1 and 0 < ~ < 1. 

When ~ = 1, the third condition for the monotonicity of the numerical 
scheme is satisfied whenever the solution is a nonincreasing function of x. 
Since a monotone scheme is monotonicity-preserving, once this condition 
is satisfied everywhere on the configuration, under iteration (13), it will 
continue to hold. Thus, if the initial conditions of a simulation satisfy (14), 
then the iteration is and remains monotone. This corresponds to an initial 
profile of velocities in which the faster fluid particles are to the left and 
overtake the slower moving particles, or those with negative velocity, to the 
right. These are just the conditions under which the solution forms a shock 
(Fig. 1 ). 

Conversely, if conditions (14) are violated in the initial configuration, 
then we do not have a monotone scheme. In fact, if this is the case 
everywhere on the configuration, i.e., if v~ 1 < v~+ 1 everywhere, then under 
the effects of iteration (13), this will always be the case. This corresponds 
to an initial profile of slower particles on the left and increasingly faster 
particles to the right, in which case the solution exhibits a rarefaction or 
expansion wave. In this situation we are assured that the above scheme will 
never be monotone. Figure 2 shows such an example; the numerical scheme 
is not convergent. 

Now consider the case 0<c~< 1. Notice that if ~ < l / 2 ,  then 
(c t -  1)/c~ ~ - 1 ,  and the third requirement for monotonicity is automati- 
cally satisfied since vy_ 1 - vy+ 1 >~ - 2 V  is always true. Thus, if a ~ 1/2, then 
for any initial velocity distribution, the resulting numerical scheme is 
guaranteed to be monotone. Figure 3 shows the rarefaction wave example 
of Fig. 2, only now with a = 1/2. 
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For the sake of clarifying the importance of monotonicity in this 
numerical scheme, we consider the inviscid, hyperbolic Burgers' equation 
[Eq. (1) with # = 0] in conservation form 

u ,+L=0  (15) 

with flux function f(u)=u2/2. The solutions of this equation exhibit 
features different from those of the viscid, parabolic equation (# # 0). For 
example, in the viscid equation, shocks are smoothed out by the effect of 
dissipation, whereas in the inviscid equation, shocks are true discontinuities 
and piecewise continuous weak solutions are admitted. Constrained to 
respect the conservation law of Eq. (15), any such weak solution must 
satisfy the Rankine-Hugoniot jump condition across a discontinuity: 

U t  "1- U r 
s = - -  (16) 

2 

where s is the speed of propagation of the discontinuity and u~ and ur are 
the velocities to the left and right of the discontinuity, respectively. 

Another difference between the two equations lies in the unicity of the 
solutions. The solution of the viscid equation is uniquely determined by 
initial conditions, and the unique solution is considered physically relevant. 
On the other hand, weak solutions of the inviscid equation, even those 
respecting the Rankine-Hugoniot condition, are neither necessarily unique 
nor physical. For given initial conditions, there is a unique solution 
considered physically relevant, but there can be other, spurious solutions. 
An additional condition is imposed in order to distinguish the physical one 
from the others. (3,10, 11) 

The principle applied is that any physical solution of the inviscid equa- 
tion is presumed to be "near" the solution of the viscid equation with some 
(small) dissipation. More precisely, a physical solution of the inviscid equa- 
tion must be the limit as e tends to zero of solutions of equations of the 
form 

ut + fx(U) = a(flUx)x (17) 

For such a solution the following inequality has been shown to hold at a 
(shock) discontinuity: 

f(u) - f (u , )  >>f(u)-f(ur) (18) 
U - -  U l U - -  U r 

where u is any value between ut and ur. In addition, the weak solution of 
Eq. (15) which satisfies condition (18) is unique. ~11'~2) For Burgers' equa- 
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tion, the condition (18) which distinguishes the physical solution from the 
others is that 

ul>~ur (19) 

at any discontinuity of the solution. Thus physical solutions must decrease 
across shocks (discontinuities); increasing solutions must be shock-free 
(continuous). 

An analogous relation between the velocities on either side of a shock 
in a perfect gas follows from the second law of thermodynamics: entropy 
cannot decrease in adiabatic flow and this can be used to demonstrate that, 
across a normal shock wave, velocity is constrained to decrease from super- 
sonic to subsonic. (13) By analogy, then, inequality (19) above is known as 
an entropy condition. 

Not surprisingly, a numerical method for approximating the solution 
of Burgers' equation must also take into account the physics modeled by 
the continuous equation. For  instance, a difference scheme for the inviscid 
Burgers' equation which cannot itself be written in conservation form can 
converge to a function which is not a weak solution of the original equa- 
tion, because it is not constrained to respect the Rankine-Hugoniot  condi- 
tions. (1~ A k-step finite-difference approximation to (15) is in conservation 
form if it can be written as 

n + l  - -  n n n n n n 

uj -uj-,~[g(uT_~+~,u)_k+2 . . . . .  u)+~)-g(uj_k,u)_~+! ..... u)+~_~)] 
(20) 

where 2 = At/Ax is a constant and g is the numerical flux; it is consistent 
with the original conservation equation if g(u ..... u) =f (u ) .  ~1~) Beyond this, 
a numerical scheme consistent with Eq. (15) but which does not itself 
respect the entropy condition risks converging to one of the spurious, 
nonphysical weak solutions of the equation. 

Now the reason for the foregoing consideration of the inviscid equa- 
tion should become clear when we remark that the finite-difference scheme 
approximation for the viscid Burgers' equation, Eq. (11) under conditions 
(12), is consistent with the inviscid equation (15). To see this, notice that 
the scheme (11) can be written in conservation form 

u7 + '  = u 7 - 2 [ g ( u  7, u}+ i)  - g (u }_ , ,  u } ) ]  (21) 

with 2 = At/Ax = ~/V constant and numerical flux g(a, b) = ( # / A x )  
( - b  + a) + ab/2. Since g(u, u) = u2/2 = f ( u ) ,  this scheme is consistent with 
the inviscid Burgers' equation. That  is, the continuous limit of the 
difference scheme (11) as Ax, At ~ 0 ,  under conditions (12) with ~ fixed, 
is the inviscid Burgers' equation. 



848 Brieger and Bonomi 

0.40 i~estep T'tmestep 
0.40 I ~ 1320 

i �9 

"0.40 4).40 
-0.25 X 1.25 -0.25 X 1.25 

t = 0.000 t = 0.25O 

0A0 Timestep r l 3 ~ t e  p 

"0.25 X 1.25 -0.25 X 1.25 
t = 0.500 t = 0,750 

Timestep 
18480 

4) 25 X 1.25 4).25 X 125 
I = 1.250 t = 3.500 

Fig. 4. Periodic initial conditions: finite-difference results (solid curve) and automaton 
measurements (*). p = 3 • 10 -5, ~ = 1/2. The evolution of the system illustrates shock forma- 
tion and rarefaction wave dissipation. Fluctuations somewhat controlled in initial conditions: 
some shock widening. 
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Thus the balance equation of the lattice gas model, derived as an 
approximation to the viscid Burgers' equation, is actually consistent with 
the inviscid Burgers' equation. This is not necessarily a problem: the physi- 
cal solution of the inviscid equation is "near" the solution of the equation 
with viscosity, and one may expect a single numerical solution to describe 
relatively well the solutions of both equations. However, if the lattice 
solution does not respect the entropy condition, it may reproduce a first- 
order approximation to a nonphysical solution of the inviscid equation, 
smoothed somewhat by the second-order dissipation term, and simply miss 
completely the solution of the viscous equation. 

Now, back to monotonicity and the behavior shown in Fig. 3. 
A monotone scheme in one dimension necessarily respects the entropy con- 
dition and, if convergent, converges to the physical solution. ~1~ Recall 
that with the probability ~ as parameter in the lattice model as described 
above, when a ~< 1/2, the master equation of the lattice gas corresponds to 
a monotone scheme, and we can expect the lattice results to be near the 
solution of the viscous equation. 

In Fig. 4 we see another lattice gas simulation with a = 1/2, in an 
example with periodic initial conditions. The evolution of the system 
illustrates shock formation and rarefaction wave dissipation. 

5. CAPTURING A M O V I N G  FRONT 

In Section4 we found conditions under which Eq. (10) defines a 
monotone scheme, implying entropic solutions. Up to this point we have 
assumed that our master equations (8)-(10) adequately describe the 
behavior of the particle system as observed in the column-by-column 
measurements of the lattice gas particle density. Judging by the example 
in Fig. 4 of rarefaction and shock formation without propagation, this 
assumption appears to be justified. Consider now Fig. 5, an example of 
front propagation evolving to a standing front. The fact of the matter is 
that the numerical solution of (10) does adequately represent the solution 
of Burgers' equation in this example with # = 1/10, but the profile of v 
calculated from the actual particle distribution does not. Evidently, Eq. (8) 
does not always correctly describe the quantitative behavior of the particle 
density. 

As for the particle system itself, notice that in the example of Fig. 5, for 
which the lattice dynamics was defined by a = 1, the lattice measurements 
exhibit the appropriate shock features except for the speed of shock 
propagation. The scaling used in our model is imposed by the conditions 
(12), which imply, for fixed ~, that in the continuum limit At/Ax remains 
fixed and AxZ/At -+ O. This is not a scaling limit which captures diffusion or 
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2.0 _ _  F ~ s s  
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Fig. 5. Shock propagation: exact solution (heavier solid curve), automaton measurements 
(*), and finite-difference results (�9 /~= 1/10, ~ = 1  (deterministic dynamics). The lattice 
measurements exhibit the appropriate shock features except for the speed of shock 
propagation. Fluctuations not controlled in initial conditions: shock widening. 
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its effects on front propagation in the model. We might consider another 
scaling where At/Ax--. 0 and Ax2/At remains constant, in which case diffu- 
sion should be captured. To do so, we must adjust our scaling to be com- 
patible with this diffusive limit and yet continue to respect conditions (12), 
fundamental to our simulation. This is possible if, in approaching the 
continuum, we consider e variable. (14~ Remark that conditions (12) imply 
that #--(9(Ax). If we let c~=p, then we indeed find ourselves with the 
scaling in which At/Ax ~ 0 and Ax2/At is fixed, and we respect conditions 
(12) so important to our model. This is then the scale on which the particle 
system should be able to exhibit diffusive behavior. 

It is not a priori clear which values of c~ are sufficiently small so that 
the lattice gas captures the effect of dissipation consistent with the solutions 
of Burgers' equation and of the master equation (10). For the initial condi- 
tions of Fig. 5, setting c~ = F = 1 yields the same behavior as in Fig. 5, 
meaning that these values are so large that convection incorrectly 
dominates the model. Figure6 shows the same example but with 
c~=/t= 1/10, and Fig. 7 shows an example of front propagation with 
c~--#-- 1/100. The scaling appears adequate in these two cases. 

Not surprisingly, the "sufficiently" small values of c~ are those which 
also ensure that the master equation (8) yields a quantitatively good 
description of the lattice particle distribution. Transition probabilities (7) 
used to derive Eq. (8) were approximated using the assumption that 
occupation probabilities at neighboring sites are decorrelated. The smaller 
the parameter e, the smaller the effect of this approximation and the closer 
the solution of (10) to the profile of v calculated from the actual particle 
density. 

Another feature worth noticing in the figures is the shock width in the 
lattice gas simulation. A shock in an individual lattice system can be 
microscopically sharp, but each such system, initialized stochastically 
according to the same probability profile, will have its own shock position 
determined by the initial particle placement, The particle distribution, 
averaged over several lattice systems, will manifest a shock width depen- 
dent on the individual shock positions. In general, when the configurations 
of particles are initialized stochastically, there are resultant fluctuations 
around the desired initial velocity profile. A shock seems to be a point of 
accumulation of the effect of these initial particle fluctuations, apparently 
due to the unidirectional nature of the dynamics. In closed systems, the 
fluctuation in total number of particles initially placed in each lattice 
system determines the shock width. For these closed systems, assuming an 
initial multinomial probability distribution on N lattice sites, the relative 
shock width diminishes in the hydrodynamic limit as N -1/2. Figure 5, in 
which fluctuations were not controlled in the initial conditions, exhibits 
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Fig. 6. Shock formation: exact solution (heavier solid curve), automaton measurements (*), 
and finite-difference results ((3). /~=1/10, ~=1/10. The lattice measurements exhibit the 
appropriate speed of shock propagation. Initial conditions which force an identical number of 
particles in each of the 100 1D lattice systems: the shock is sharp. 
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Fig. 7. Front propagation: finite-difference solution (solid curve) and automaton 
measurements (*). /~= 1/100, ~ =  1/100. The lattice measurements exhibit the appropriate 
speed of shock propagation. Fluctuations not controlled in initial conditions: some shock 
widening. 

shock widening. This is in contrast to Figs. 1 and 6, in which initial fluctua- 
tions were minimized. The cumulative effect of the initial fluctuations on 
the shock width is also seen in Figs. 4 and 7. 

6. C O N C L U S I O N  

A lattice model, a simplified universe consisting of a large number of 
particles and governed by its own extremely simple laws, can capture the 
macroscopic properties observed in a physical system and this without 
necessarily requiring the detailed realism of the dynamics. This is not com- 
pletely surprising given that, in general for both lattice and physical 
systems, the global characteristics actually observed are the composite 
effect of an enormous number of elementary processes, whose essential 
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natures are completely hidden by the reducing effect of the law of large 
numbers. 

We have considered in this article a stochastic lattice gas model for 
Burgers' equation, with a simple approximation of the master equation. 
The behavior of the model has been illustrated in several examples 
encompassing the various characteristics of solutions of Burgers' equation, 
including shocks and rarefaction waves. Under appropriate conditions on 
the parameter c~, which governs the lattice gas dynamics, #, the constant of 
diffusion in the equation, and the discretizations Ax and At, this master 
equation is equivalent to a finite-difference discretization of Burgers' equa- 
tion. Questions of convergence to the right (physical) solution have been 
investigated: a condition on e has been found which guarantees that solu- 
tions of the approximate master equation respect an entropy condition. An 
additional condition on c~ relative to ~t has been observed to yield the 
scaling appropriate for front propagation in the lattice simulation. Under 
this same condition the description of the particle system furnished by the 
approximate master equation is refined. 

This study of a lattice model for Burgers' equation has been intended 
to clarify the sort of considerations generally necessary in the construction 
and evaluation of lattice models for given PDEs. We can expect that with 
more complicated models of more complex equations, such investigations 
will become all the more necessary and intricate. 
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